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Abstraet-Two mixed boundary value problems in potential theory for a semi-infinite cylindrical shell are
solved. The first is interpreted as a heat conduction problem for an msulated shell containing a
circumferential obstruction. The second is the torsion of a cylindrical shell containing a circumferential
crack. For both problems the normal derivative of the potential function is taken as zero on the inner and
outer shell walls. The boundary conditions at the end of the shell are mixed with respect to the potential
function and its normal derivative. The problems are formulated using inteara1 transforms in a manner leading
to a singular integral equation which can be solved by numerical means. Intensity factO!'! along the
circumference separating the mixed conditions are computed.

I. INTRODUCTION

In this paper two mixed boundary value problems in potential theory for a cylindrical shell
geometry are considered: axially symmetric potential theory governed by the equation.
V31/1(r, z) =0, and axially symmetric torsion governed by the equation. VZI/Il(r, z) cos 8 =O. Here.
VZ is the Laplace operator. The problems are such that the normal derivative of the potential
function is taken as zero on the shell walls, r =1 and r =1+d = 13, and the boundary conditions
are mixed with respect to the function and its normal derivative on the end of the shell, z =0,
1< r < 13 (see Fig. 1).

The problems are formulated by means of integral transforms in a form that contains
solutions for an infinite cylinder and for a cylindrical cavity. By suitable definition of integral
transforms analogous to that of Erdogan(l], the considered problems are reduced to singular
integral equations. The equations, prepared for solution by the technique of Erdogan, Gupta
and Cookf2J, are solved for the pertinent physical quantity, the intensity factor.

It is noted that the kernels of the integral equations are infinite integrals which have a rather
slow rate of convergence. The convergence can be improved by subtracting the slowly
convergent parts of the integrand which are the leading terms in its asymptotic expansion. These
slowly convergent terms can be evaluated in closed form, thereby leading to a rapidly converging
infinite integral which can be evaluated numerically along with a closed form expression.
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2. AXIALLY SYMMETRIC POTENTIAL THEORY PROBLEM

The axially symmetric potential theory problem for the cylindrical shell geometry shown in
Fig. 1 is considered. The inner radius of the shell is r = 1 and the outer radius is r = 1+ d =(3
where d is the shell thickness and r, 8, and z are cylindrical coordinates and the z axis is the shell
axis. We also define 'Y = I + a where a is the radial crack length. The boundary conditions are

where", = ",(r, z) and

a",lar= 0;

a"'laz= -p(r);

"'=0;

r=I,(3;
z =0;

z =0;

OSz<co

ISrs'Y

'Y Srs (3

(la,b)

(2)
(3)

VZt/J=O, -co<z<co, tsrs(3.

A suitable choice for t/J(r, z) that satisfies eqn (4) is given by

(4)

"'(r,z) =L'" AU)e-ezUlr)d€+ L'" BU)KoUr) sin Uz) d€+ L'" CU)loUr) sin (€z)d€ (5)

where Jo(x), Io(x), Ko(x) are respectively, Bessel functions of the first kind and modified Bessel
functions of the first and second kind.

It is convenient to write the integral transform A (f) in terms of the finite integral given next;

A(€)=-f' tq>(t)JMt)dt (6)

q>(r) = at/Jlar
=0

(7a)

(7b)

The choice for A U) given in eqn (6) automatically satisfies (3).
By noting that [3, p. 49(10)]

L
OO

€(e +l1Z)-·J~(€r)J~W) d€= I~(l1r)K~(l1t) 0< r < t

1~(l1t)K~(l1r) 0< t < r,

(8a)

(8b)

applying boundary conditions (1), and taking Fourier sine transforms leads to the determination
of BU) and CU) as

~ (Y (Y2I1B(11)= - 1.(11)1.(1113) J. tq>(t)K.(l1t)dt +1.(l1)K.(l1!3) J. tq>(t)I.(l1t)dt

¥I1C(l1) = K.(l1 )K.(l1!3) i Y

tq>(t)I.(l1l) dt - K.(l1!3)I.(l1) i Y

tq>(t)K.(l1t) dt

where

Finally, boundary condition (2) gives the following equation

(9a)

(9b)

(10)

+ ~ i Y

tq>(t) L"'l1K~11I3)[K.(11)1.(11t)-I.(11)K.(l1t)]lo(l1r)dl1 dt = -p(r), 1S r S 'Y.

(II)
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The infinite integral in the first term in eqn (11) can be written in the following simpler form

== Ko(r, t)

(l2a)

(l2b)

(l2c)

where K and E are complete eUiptic integrals of the first and second kinds, respectively.
Thus

LY t<p(t)[Ko(r, t)+ K1(r, t)+K2(r,t)]dt =-p(r), 1SrS 1

where

(13)

K,(r, t) =~ L"111~11) [K,(71~)II(11t) - 11(11~)K'(11t)]Ko(11r) d11 (1411)

K 2(r, t) =; L"11K~11~) [K ,(11 )1'(11t) - 1,(11 )K'(11t)]lo(11r) d11. (l4b)

In general the integrals given by eqns (14) will converge provided that 1< r, t <~; however, in
the limiting cases 1 - 1 and 1 - ~ the convergence may not be especially good. The
convergence of the integrals can be enhanced by subtracting functions from the integrand which
behave like the leading terms in its asymptotic expansion. This technique is described by
Krylov[4] and some further examples applied to oscillating integrands are given by Rice [S]. Thus
K,(r, t) and K 2(r, t) are modified as follows:

21"{1111(11)K,(r, t) =:; 0 -A-[K,(11{3)II(11t )- 11(11{3)K ,(17t)JKo(11r )

- (I/4rt)'12[e-'I(r+l-2) - a,(r, t )(e-'I(r+.-2) - e-2'Y'1 )/11]} d11

+(1/'JT2rt)'12{l/(r + t - 2) - al(r, t) In [21/(r +t - 2)]} (15)

where

and

1( 1 3)al(r.t)=- 6+---, 8 r t
(16)

where

K 2(r, t) =; L" {11K~11~)[K'(11)11(11t ) - 11(11)K1(11t)]lo(11r )

+(1/4rt)I12[e-'I(21J-t-r) +a~r, t )(e-,,<2/J-r-.) - e-2/ht)/11]} d11

- (II 'JT2rt )1/2{l/(2{3 - r - t) +a2(r, t) In [2{3/(2{3 - r - t)]} (l7a)

(17b)

The kernels given in the form of eqns (15) and (17) will allow their numerical evaluation with good
accuracy for the limiting cases mentioned. Note that the terms involving e-2,." and e-2/ht, ill (15)
and (17a), have been introduced artificially so that the 1/11 asymptotic terms could be used
without causing the integrals to diverge. The exponential argument factors of 21 and 2{3 were
chosen so that the artificial terms have little effect on the integrand values for large 11.
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The physical quantity of interest in this case is the intensity factor, which is defined as
follows:

or equivalently

K = -lim Coy - r)1/2 al/!.-'!' ar

(
1 - t)l/2Kla I/

2 =-lim -- <p(t).
I-'Y a

(18)

(19)

3. AXIALLY SYMMETRIC TORSION PROBLEM

The potential theory problem considered in this section corresponds to that of axially
symmetric torsion for a cylindrical shell having a circumferential crack. The displacements and
stresses corresponding to axially symmetric torsion are given in Green ~d Zerna[6] in terms of
one potential function as

U6= -al/llar

Tztl/,." = -a 21/1laraz

Trill,." = r 2a(r- l aI/l/2r)/ar

where I/! is given by eqn (5). Let

then I/!I is of the form

(20a)

(20b)

(2Oc)

(21)

The geometry of Fig. I is applicable and the boundary conditions are

Trill,." = a(r-II/II)/ar = 0 r =I, /3, Osz<oo

TZ81,." =al/l1/az =: -p(r) z =0, Isrs')'

U9 =: 1/11 =: 0 Z =: 0, ')' $ r $ /3.

As in the previous section

AM) =: - f' t<Pt(t)J2W) dt

<PI(r) =r~ (!I/!t) 1$ r $ ')'
dr r

=0 ')'$r$/3

(23a,b)

(24a)

(24b)

(25)

(26a)

(26b)

where the choice of At will automatically satisfy (24b). Applying boundary conditions (23), taking
the Fourier sine transforms of the resulting equations, and using eqns (8), one is led to
simultaneous equations for B 1 and C1 whose solution is

(27a)

(27b)

where

(28)
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Boundary condition (24a) gives the following equation:

727

f' tfPl L~ U~€t)JMr) d€ dt

+! f' tfPl(t) {~1'J1~(1J)[K2(/l")lb't)-12(/31'J)K2(,,,t)]KI(1'Jr)d1Jdt
11' JI Jo UI

+1 ('Y tfPI(t) 1~ 7JKt/37J) [K2(1J )12(1Jt) - 12(1J )K2(",t)J11(",r) d", dt
11' JI 0 1

= -p(r), 1s r s 1. (29)

Following the method in Section 2, eqn (29) can be written as

J.'Y tfPl(t)[Ro(r, t) +R1(r, t) +R2(r, t)J dt =- p(r), 1s r s 1

where

(30)

R1(r, t) = ; L~ {1J1~:7J)[K~/31J)I~1'Jt)- 12(/37J)K2(1Jt)JKI(1Jr)

- (l/4rt)II2[e-"l('+t-2) - /31(r, t)(e-"l(,+t-2) - e-2'Y"l)/", J} d",

+ (1/11' 2rt)II2{l/(r + t - 2) - /31(r, t) In [211(r +t - 2)] (32)

where

and

3( 5 1)/31(1'. t)=- 10----, 8 t r (33)

where

R~r, t) =~L~ {7JKt~ll) [K~1J)li1Jt) - 12(1J)K~",t)]II(1Jr)

+(l/4rt)I/2[e-"l(2ll-'-,) + /3ir, t)(e-"l(21J-t-') - e-21J"l)/1J]} d",

- (l/11'2rt)1/2{l/(2!l - r - t) + /3ir, t) In [2/3/(2/3 - r - t)J} (34a)

3(10 5 1)!l2(r. t) =- -----, 8/3tr'

For this case the quantity of physical interest is the intensity factor which is given as

(
1 - t)112KIa 112 = -lim - fP(t).,...,. a

(34b)

(35)

4. NUMERICAL ANALYSIS

The numerical analysis for the integral eqns (13) and (30) given respectively in Sections 2 and
3 proceeds in identical fashion, The technique is based upon the collocation scheme for the
solution of the singular integral equations given by Erdogan, Gupta and Cook[2]. Thus, by
choosing the following change of variables in eqn (13)

r =1+a(s + 1)/2, t =1+afr +1)/2,
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and by writing q>(t) in the form

or

L. M. KEER and H. A. WAlTS

(36)

the system of simultaneous equations given below is obtained:

2:: 1~ (I + TI)[i(T/ + 1)+ 1]4>(T,){Ko(St, T/)+ KI(St, T/)+ Kz(s", T,)}

= -p(1+~a +~aSk)' k =1,2, ..., n (37)

where

[
2i -1 ]

T/ =cos 2n +11'

(
2kl' )

Sic =cos 2n + 1

i =1,2, ..., n

k =1,2, .. .,n.

(38a)

(38b)

This amounts to applying a Gaussian quadrature formula for approximating the integral of a
function f(T) with weight function [(I +T)/(I - T)]I/2 on the interval [-1,1]. Thus,

(39)

where the T, are given by (38a). For example, see formula 25.4.43 in Ref. [7]. The procedure for
the transformation of eqn (30) into a system of simultaneous equations is identical to the above
and will not be listed here.

The integral equations were solved on a high speed digital computer using several numerical
integration schemes to be discussed below. The computer used was a CDC 6600 having a word
length of approximately' fourteen decimal digits. The results, given as intensity factors, are
summarized in Table 1. For the potential theory problem (denoted by 1), p(r) =p(constant).
Intensity factors defined by eqn (19) are given for d =0.25,0.10 and several values of ald. The
results appear to approach the asymptotic limit of l/Y2 as aId -+ O. The intensity factors defined
by eqn (35) for the torsion problem are given for the two cases: IIa, p(r) = p and lIb, p(r) = prIll
The results appear to approach the asymptotic limits of l/Y2 and 11fJ v'2 for cases IIa and lIb as
aId -+0.

To gain some confidence in the numerical results obtained we have examined several
quadrature schemes for approximating the semi-infinite integrals (lS), (17), (32), and (34). We
have also made some comparisons where the number of collocation points were varied as well as
the number of asymptotic terms (", -+ (0) subtracted from the integrand. Typical behaviors are
shown in Tables 2 and 3. The quadrature schemes tried consisted of a 15 point Gauss-Laguerre
routine GLlS, a 40 point Gauss-Laguerre routine GL40, and a semi-adaptive routine QINFI

Table 1. Intensity factors (I: lim -[('y - t)/aj·/24l(t)/p;IIa.IIb: lim -[(y - t)lal'l24l.(t)/p)
l-+y t_.,

a/4 .05 .2 .4 .6 .8 .95

4 •• 25 .7036 .7027 .7273 .8009 1.017 1.870
(1)

4 ••10 .1061 .7122 .7461 .8309 1.067 1.975

4· .25 .6983 .6834 .6904 .7442 .9291 1.69,
(IIa)

4· .10 .7039 .7038 .7292 .8041 1.024 1. 890

4 •• 25 . >631 .,644 .,880 .6'19 .8329 1. 536
(lIb)

d •• 10 .6420 .6480 .6797 .7579 .97"1 1. 806
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Table 2. Sample behavior of semi·infinite integral evaluation when subtracting off two, one or none of the
leading terms in the asymptotic form of the integrand

r • t • 1.000007 ! r • t • 1.0005

2.. terrn 14 term O.. tt:!t'm 2-ter:!\ I-tcrrn O.. tcnn

Asymptotic: part 35701. 2 35711.5 O. "1.719\ i 47.1328 O.

GLlS 35705.8 35710.8 23.9 46.0839 46.116 17.6

GL40 35705.8 35710.0 71.5 46.0840 46.16 35.2

Q1NFI 35705.8 35705.8 35705.8 46.08/+0 46.0841 46.081,1

Table 3. Sample behavior in problem solution ~'Y) as we vary the number of collocation points using a
2·term asymptotic formulation and then varying the number ofasymptotic terms being subtracted

Potential Problem Torsion Problem

•• 0.005 a • 0.2375 a • 0.005 a • 0.2375

d • 0.1 d • 0.25 d • 0.1 d • 0.25

10 points 0.7062 1. 873 0.7041 1. 708

20 points 0.706l 1.870 0.7040 1.699

30 points 0.706l 1.869 0.7039 1. 695

l-term 0.7057 1.870 0.7026 1.694

O.. term 0.895 1. 788 0.8898 1.62l
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which examines convergence behavior in order to achieve the requested error tolerance.
Typically, QINFI requires from 3 to 10 times the cost of using GUO while GUO requires about
2.5 times the cost of using GL1S.

Table 2shows the results of each of these routines when two, one or none of the leading terms
in the asymptotic form of the integrand are subtracted before integration. The problem being
examined corresponds to a =O.OOS, d =0.1 and the use of 20 collocation points. The
corresponding values of r and t represent (approximately) the two extremes actually used in the
computation of the collocation matrix for determining the solution of the integral equation. We
conclude that it is safe to use the less accurate and least expensive routine GL1S provided we
subtract off the leading two terms in the asymptotic expansion of the integrand as TI -+ 00.

Table 3 shows the behavior in convergence of the collocation scheme for several problems of
interest. This examination led us to use 20 points for the potential problems and 30 points for the
torsion problems. Thus, using GL1S and a two term asymptotic subtraction scheme the results
shown in Table 1 were obtained. We believe the values to be accurate to about three significant
figures. Typical computation times were about 14 sec for the potential theory problem and 78
seconds for the torsion problem.
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